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ABSTRACT
Solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics
could provide atomic scale information to understand the diffusion process of Li-ion in these superionic conductor materials. Here, we
implement the deep potential generator to set up an efficient protocol to automatically generate interatomic potentials for Li10GeP2S12-type
solid-state electrolyte materials (Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12). The reliability and accuracy of the fast interatomic potentials are
validated. With the potentials, we extend the simulation of the diffusion process to a wide temperature range (300 K–1000 K) and systems
with large size (∼1000 atoms). Important technical aspects such as the statistical error and size effect are carefully investigated, and benchmark
tests including the effect of density functional, thermal expansion, and configurational disorder are performed. The computed data that
consider these factors agree well with the experimental results, and we find that the three structures show different behaviors with respect to
configurational disorder. Our work paves the way for further research on computation screening of solid-state electrolyte materials.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041849., s

I. INTRODUCTION

All-solid-state Li-ion batteries are among the most promis-
ing candidates for the next-generation rechargeable batteries.1–5

Desired solid-state electrolyte (SSE) materials should have high Li+

conductivities and wide electrochemical windows. Several groups
of promising candidates, with performance competitive to current
commercial liquid electrolytes (e.g., Li10GeP2S12,6 Li7La3Zr2O2,7

and Li7P3S11
8), have been reported. Due to their relevant highest

ionic conductivities, the families of Li10GeP2S12-type materials have
attracted extensive studies.6,9–11,69,75,83–86,88,89,91

Improvement of SSE performance benefits from the fundamen-
tal understanding of the atomic-scale diffusion process. The ab initio
molecule dynamics (AIMD) calculation12 has been utilized to inves-
tigate the microscopic details of the diffusion processes.9–11,13–15 The
diffusion coefficients of most superionic conductors ranges from
10−13 m2/s to 10−10 m2/s. Unfortunately, due to its high computa-
tional cost, AIMD is typically limited to a system size of hundreds
of atoms in the time scale of tens of pico-seconds. Accurate calcu-
lation of diffusion coefficients requires simulations in the time scale
of nanoseconds, which is unreachable for current AIMD methods.
This makes AIMD practically impossible to accurately estimate the
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diffusion coefficients of solid-state electrolyte materials at experi-
mental conditions, i.e., at room temperature. Therefore, one often
resorts to the extrapolation strategy: assuming that a single Arrhe-
nius relationship applies to a wide temperature range (this implic-
itly assumes a temperature-independent diffusion mechanism), then
one can predict the ionic conductivity under working conditions (–
40 ○C to 80 ○C) by extrapolating from the high-temperature regime
(>500 K) to the low-temperature regime (<500 K).

A commonly found protocol in the literature based on this
assumption is to collect high-temperature diffusion coefficients
(600 K–1200 K) from 100 ps to 400 ps AIMD simulations9–11 includ-
ing 100–200 atoms and extrapolate these data to obtain room-
temperature ionic conductivities. However, this extrapolation strat-
egy based on temperature will lead to deviations up to two orders

of magnitude at room temperature. As demonstrated in Fig. 1(a),
AIMD calculations significantly overestimate diffusion coefficients
at room temperature. This issue, in particular, when applied to SSE
materials, has been comprehensively discussed by He et al.23

Even more problematically, this extrapolation approach loses
predictive power when the Arrhenius-type temperature dependence
breaks down, which has been discussed in detail over 40 years
ago.18 Figure 1(b) shows that three types of superionic conductors
give rise to different transition behaviors of the ionic conductiv-
ity with respect to the inverse of the temperature. The temperature
dependence of ionic conductivities of several typical ionic conduc-
tors is depicted in Fig. 1(c). The examples of Li10.05Ge1.05P1.95S12
and β-Li3PS4 represent the failures of the extrapolation strategy in
Li10GeP2S12-like systems. The assumption behind the extrapolation

FIG. 1. (a) Diffusion coefficients of Li10GeP2S12 by AIMD calculations11,16 (blue, orange, and gray points) and solid state NMR measurement17 (red points). The AIMD data
are extrapolated to room temperature. The dashed vertical line corresponds to room temperature (300 K). (b) Schematic illustration of the three kinds of the temperature
dependence of the conductivity, according to Ref. 18. (c) Temperature dependence of the ionic conductivity of Li-ion superionic conductors from experiments. Data were
taken from β-Li3PS4,19 Li10.05Ge1.05P1.95S12,20 and Li9.75Ge0.75P2.25S12.21 (d) Characteristics of the Li10GeP2S12 structure. The occupation ratio of P in the M1(4d) site for
all three systems is around 0.5.6,17,22
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strategy is only applicable to systems whose diffusion mechanisms
are independent of temperature.

An explicit solution is to directly simulate the diffusion pro-
cesses at room temperature, which requires larger systems and
longer trajectories to ensure the convergence. Thus, acceleration of
simulations without losing the accuracy of Density Functional The-
ory (DFT) calculation is desired. There have been ever-increasing
efforts recently to develop empirical interatomic potential or model
Hamiltonians involving simple analytical terms to speed up sim-
ulations for SSE materials of interest.24–27 However, due to the
relatively large errors, the empirical models are only suitable for
the crude screening of materials. More recent works have utilized
machine learning (ML) tools5,28–31,73,74 to represent the many-body
and nonlinear dependence of the potential energy surface (PES) on
atomic positions for modeling.32–37 In particular, applications to SSE
materials, e.g., Li3PO4,36 LiPON,35 Li10GeP2S12,38 and Li3N,37 have
recently been explored.

Despite these efforts, two major obstacles have remained.
First, a systematic and automatic procedure to generate uni-

formly accurate PES models, with a minimal set of training data, is
still largely missing. The most straightforward approach is to per-
form extensive AIMD simulations at different temperatures and
train models based on these AIMD trajectories. However, this pro-
cedure is computationally demanding, and the generated snapshots
are highly correlated, reducing the quality of the training data. For
this reason, a great amount of trial-and-error process is involved
in most of the ML-based models, and consequently, the reliability
of these models is in doubt. In addition, the performances of ML
potentials depend on a few factors, including the reliability of locality
assumption, quality of training data, and hyperparameters of mod-
els. Specifically, though there have been some efforts to set up ML
potential generation schemes for different materials,38–44 there lacks
a well-benchmarked, automatic, and efficient scheme for the genera-
tion and validation of ML potential for Li-ion superionic conductor
materials.

Second, the diffusion process is determined by the structures,
e.g., lattice volume9,11 and configurational disorder.45–48 The struc-
ture of Li10GeP2S12 is visualized in Fig. 1(d) in which MS4 (M = Ge,
Si, Sn, and P) tetrahedrons form the solid-like backbone and the
liquid-like Li-ions are free to flow across the channels. The tetra-
hedral units include two groups of sites, M1(2b) and M2(4d). The
M2(4d) sites could be occupied by Ge/Si/Sn/P atoms, while only P
atoms are found to occupy the M1(2b) sites. The fractional occupa-
tion results in the disordered arrangement of MS4 tetrahedral units.
To the best of our knowledge, little attention has been paid to the
effects of the thermal expansion of the lattice volume and config-
urational disorder on diffusion processes. To set up protocols to
accurately compute diffusion coefficients of Li10GeP2S12-type mate-
rials at different temperatures, technical issues of MD simulations
and the effects of these factors shall be validated.

In this work, we implement a concurrent learning scheme (DP-
GEN) to generate uniformly accurate Deep Potential (DP)81,82 mod-
els for three Li10GeP2S12-type superionic conductors (Li10GeP2S12,
Li10SiP2S12, and Li10SnP2S12), respectively. The reliability and per-
formance of the DP models are examined, including the locality test,
model accuracy, and speed test. With the DP models, the effects of
key simulation settings, thermal expansion, and configurational dis-
order have been investigated. The validated protocol is applied to

compute diffusion coefficients between 300 K and 1000 K. Finally,
the simulation results are compared with experimental data and the
differences are discussed.

II. METHODS
A. DP-GEN for Li10GeP2S12-type structures

Using the Deep Potential Generator (DP-GEN),49,50 a mini-
mal set of training data is generated via an efficient and sufficient
sampling process, thereby guaranteeing a reliable PES model pro-
duced by training. The flowchart of DP-GEN iteration is shown in
Fig. 2. In the exploration step, model deviations are evaluated using
the ensemble of trained models, and new configurations are picked
according to the maximum deviation of forces (σmax

f ), defined as

σmax
f = max

i

√

⟨∣∣fi − ⟨fi⟩∣∣2⟩, (1)

where f i is the force acting on atom i and ⟨⋯⟩ denotes the average of
the DP model ensemble. Configurations with small force deviations
[σmax

f < σlow, yellow squares in Fig. 2(c)] are effectively covered by
the training dataset with high probability. On the contrary, exces-
sive force deviation [σmax

f > σhigh, red crosses in Fig. 2(c)] implies
that the configuration may diverge from the relevant physical tra-
jectories. Therefore, none of them are picked. Only configurations
whose σmax

f fall between a predetermined window are labeled as can-
didates [blue circles in Fig. 2(c)]. In practice, after running several
MD trajectories, the selection criterion usually produces hundreds
or thousands of candidates. A small fraction of them is representa-
tive enough to improve the model, and therefore, a cutoff number
(Nmax

label) is set to restrict the number of candidates. These candidates
are labeled and added to the original dataset for the next training.
The labeling and training stages are rather standard, while there is
large flexibility for the sampling strategy on how to explore the rel-
evant configuration space in each iteration. According to Ref. 50, a
practical rule of thumb is to set σ low slightly larger than the train-
ing error achieved by the model and set σhigh 0.1 eV/Å–0.3 eV/Å
higher than σ low. In this paper, σ low and σhigh are set to 0.12 eV/Å
and 0.25 eV/Å, respectively.

In this work, all crystal structures are fetched from the Materials
Project51,52 database as conventional cells. The material IDs of them
in the Materials Project are as follows: mp-696138 [Li10Ge(PS6)2],
mp-696129 (Li10SiP2S12), and mp-696123 (Li10SnP2S12). Structure
manipulation is dealt with pymatgen.53

The DP-GEN is started with 590 structures that are generated
via slightly perturbing DFT-relaxed structures. A smooth version of
Deep Potential (v1.2),31,54 which is end-to-end, i.e., capable of fitting
many-component data of SSE materials with little human interven-
tion, was used for the training step. The exploration is run on five
systems step by step. Each system is composed of three or four
iterations depending on its convergence. The exploration time of
each system is gradually lengthened from 1000 fs to 10 000 fs. The
exploration is beginning with ordered structures relaxed by DFT
(i.e., structures downloaded from the Materials Project database in
which the position of Ge/Si/Sn/P atoms is fixed). Then, the explo-
ration is changed to disordered structures whose 4d sites are ran-
domly occupied by Ge/Si/Sn/P. Exploration with the NpT ensemble
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FIG. 2. Schematic illustration of the DP-GEN process. Usually, a dataset with hundreds of configurations is required to start the iteration of DP-GEN. Each DP-GEN iteration
includes the three following stages: labeling, training, and exploration. (a) First, configurations are labeled by high precision single-point DFT calculations. (b) Then, an
ensemble of DP models with the same architecture (i.e., number of neural network layers and nodes) but different random seeds is trained simultaneously using the whole
dataset. (c) To explore larger configuration space, a few MD simulations at different thermodynamic conditions are driven by the ensemble of DP models from the previous
stage. The selected candidates are labeled by DFT calculation and then added to the dataset. The exploration process is considered converged after a predetermined number
of loops is reached or only a small percentage (e.g., 0.5%) of candidates are found in the last exploration iteration.

means that configurations with different lattice parameters could
be automatically sampled. Finally, the exploration is performed in
the systems with experimental lattice parameters. The exploration of
each system is considered converged when the percentage of accu-
rate configurations is larger than 99.5%. The detailed settings of
the DP-GEN are listed in Table I. The production DP models are
trained with ten times longer steps in which the number of batch
and the step of learning rate decay are set to 4 000 000 and 20 000,
respectively.

B. Locality test
A key assumption of most ML potentials is the locality. In a

nutshell, ML potentials assume that properties of each atom only
depend on its local neighboring atoms within a sphere, and the
properties of the whole system could be calculated by summing up
contributions from all atoms. However, this assumption may be
violated in some scenarios where the long-range interactions are
non-negligible. It is useful to verify the reliability of this assumption
when applying DP models to SSE materials. Herein, we employed

the locality test suggested by Bartók et al.29 For each atom, the
atom together with its neighbors within a predefined radius is fixed.
Then, a random perturbation is applied over other atoms outside
the sphere. The procedure is repeated several times to collect forces
acting on the central atoms. The deviation of forces indicates the
dependence of the atom’s properties on its neighboring atoms, i.e.,
the locality of the system. This test is performed with different cut-
off radii (5.5 Å–7.5 Å), and the procedure is run using a 2 × 2 ×
2 supercell to ensure that all cells are at least twice as large as the
cutoff distances.

C. DFT settings
DFT calculations were performed using the projector augmented-

wave (PAW)55,59,87 method applied in VASP 5.4.4.56,57 The con-
vergence test of the K-point sampling test showed that a dense
reciprocal-space mesh (0.26 Å−1) is required to ensure that forces
are converged to less than 1 meV/atom. All single-point calculations
were carried out with a 650 eV cutoff for plane-wave expansion, and
the criterion for electronic convergence was 10−6 eV.

TABLE I. Exploration settings of DP-GEN iterations.

Ensemble Iteration Temperature (K) Structure Supercell

NpT 1–4 50, 100, 200, 300, 500, 700, 900, 1200 Ordered DFT-relaxed 1 × 1 × 1
NpT 5–8 300, 700, 1200 Ordered DFT-relaxed 2 × 2 × 2
NpT 9–12 50, 100, 200, 300, 500, 700, 900, 1200 Disordered DFT-relaxed 1 × 1 × 1
NpT 13–16 300, 700, 1200 Disordered DFT-relaxed 2 × 2 × 2
NVT 19–21 50, 100, 200, 300, 500, 700, 900, 1200 Ordered experiment 2 × 2 × 2
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TABLE II. Lattice parameters and unit cell volume of Li10GeP2S12, Li10SiP2S12, and
Li10SnP2S12 relaxed with different functional settings (PBE, LDA, PBEsol, and PBE
with optB88-vdW).

Volume
Structure Method a (Å) b (Å) c (Å) (Å3)

Li10GeP2S12 PBE 8.591 8.879 12.977 989.1
PBE + vdw 8.525 8.822 12.878 967.9

LDA 8.312 8.656 12.482 897.0
PBEsol 8.503 8.811 12.760 955.1
SCAN 8.534 8.819 12.917 971.6
PBE0 8.552 8.816 12.926 974.0
Expt.6 8.6941 8.6941 12.5994 952.4
Expt.64 8.7142 8.7142 12.6073 957.4

Li10SiP2S12 PBE 8.774 8.774 12.599 970.0
PBE + vdw 8.700 8.700 12.490 945.5

LDA 8.534 8.534 12.144 884.3
PBEsol 8.696 8.696 12.368 935.3
SCAN 8.728 8.728 12.496 951.9
PBE0 8.722 8.722 12.518 952.3

Expt.65 8.6512 8.6512 12.5095 936.3

Li10SnP2S12 PBE 8.835 8.835 12.882 1005.4
PBE + vdw 8.738 8.738 12.765 974.7

LDA 8.574 8.574 12.388 910.6
PBEsol 8.744 8.744 12.625 965.3
SCAN 8.774 8.774 12.759 982.3
PBE0 8.766 8.766 12.785 982.5

Expt.22 8.7057 8.7057 12.7389 965.5

To select the functional for DP models, we optimized structures
with different exchange-correlation functional settings (LDA,58

PBE,59 PBEsol,60 PBE with van der Waals (vdW) correction,90

SCAN,61 and PBE062,63).
As shown in Table II, all methods except LDA overestimate

the lattice volume. The lattice volumes calculated by PBEsol agree
well with the experimental data. By introducing vdW correction,
the results of PBE were improved. Considering the wide adoption
of the PBE functional in the investigation of SSE materials9 and
the accuracy of the PBEsol functional on the prediction of lattice
parameters, we trained two sets of DP models (named as DP-PBE
and DP-PBEsol) to benchmark the effect of the exchange-correlation
functional.

D. Molecular dynamics settings
LAMMPS66 was employed to run all MD simulations. For each

MD simulation, four DP models are used simultaneously to evaluate
the model deviation (σmax

f ) of all snapshots in the trajectories. The
tracer diffusion coefficient (Dtr) at each temperature is estimated by
the time derivative of the mean-square displacement (MSD) of Li+,
and the block-averaged method is adopted. By default, calculations
are run with experimental lattice parameters using NVT ensemble,
and the time step is 2 fs. The Nose–Hoover thermostat is applied,
and the relaxation time is set to 2 ps. MD simulations are run in 3D
periodic cells consisting of 900 atoms (Li360Ge36P72S192). Detailed
settings of the MD simulations are listed in Table III. As reported by
the experimental work,67 it would be reasonable to assume constant
thermal expansion coefficients (3.4 × 10−5 K−1) in the temperature
range between 300 K and 1000 K. To the best of our knowledge, no
relevant experimental data of the thermal expansion of Li10SiP2S12
and Li10SnP2S12 have been reported. Here, we assume that two sys-
tems have similar thermal expansion coefficients as Li10GeP2S12. To
study the finite-size effects, the unit cell of Li10GeP2S12-type materi-
als was scaled to various sizes (1 × 1 × 1, 2 × 2 × 1, 2 × 2 × 2, 3 × 3
× 2, and 4 × 4 × 2). To study the effect of configurational disorder,
30 cation disordered structures are generated for the MD simula-
tions. For all MD simulations, the model deviations of snapshots
are computed to ensure that energies and forces of all snapshots
are reliable.

III. RESULTS AND DISCUSSION
A. Locality test

The Results of the locality test are illustrated in Fig. 3. The aver-
aged deviations of forces are around 5 meV/Å–10 meV/Å, indicating
that the assumption of the DP models is reliable for Li10GeP2S12. The
low deviations of forces acting on Li indicates the good “locality” of
Li ions, and the motion of Li ions only depends on their close neigh-
boring atoms. The relatively high deviations of Ge4+ and P5+ may
due to their high charges. The long-range electrostatic forces may
affect the forces on Ge and P atoms. With the increase in the cutoff
radius, the local environment of an atom is better described, leading
to lower deviation of forces. However, the DP models need to trade-
off between accuracy and computational cost. In the Li10GeP2S12-
type materials, we found that 6 Å would be sufficiently accurate to
describe the diffusion process, which is adopted in this work as fol-
lows. Thus, it would be useful to incorporate a long-range effect in
the machine learning potentials to improve the description of the
interatomic interaction. In conclusion, the locality test shows that

TABLE III. MD settings for the investigation of different factors, i.e., the density functional, simulation time and cell size,
thermal expansion, and configurational disorder, are listed. Natom means the number of atoms in the systems.

Factor Time (ns) Natom Temperature (K)

Density functional 1 900 400, 500, 666, 800, 1000
Simulation time and cell size 10 50, 200, 400, 900, 1600 300, 400, 500, 600
Thermal expansion 1 900 500, 666, 800, 1000
Configurational disorder 1 900 300, 400, 500, 666
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FIG. 3. The locality test of Li10GeP2S12. The averaged force deviation (σ f ) of
each element, calculated with different cutoff radii, is displayed. The error bars
correspond to the standard deviation of the force data.

the end-to-end deep potential models would be accurate enough to
investigate the diffusion of Li in Li10GeP2S12-type materials.

B. DP-GEN iteration
To better illustrate the DP-GEN procedure, it is worth taking a

thorough look at the exploration results of each iteration. Here, we
study Li10GeP2S12 in depth as a benchmark due to its importance
and extensive previous work.

Figure 4 shows the distribution of σmax
f at different tempera-

tures in the first four iterations. And Table IV displays the percent-
age of the accurate, candidate, and failed groups of configurations
in each iteration. In the first iteration, it is not surprising that the
trajectories given by the preliminary models include lots of unrea-
sonable configurations and high-temperature simulations blow up
very quickly. A large fraction of the snapshots sampled in this iter-
ation have a σmax

f larger than 0.4 eV/Å [Fig. 4(a)]. A large por-
tion of the candidates with σmax

f fallen in the selection range and
selected for labeling are from low-temperature simulations. This sit-
uation is drastically improved after just adding 300 labeled config-
urations to the training dataset. In the second iteration, most low-
temperature snapshots are labeled as “accurate” and the majority
of newly selected snapshots come from higher-temperature simu-
lations. Going from the second iteration to the third and the fourth,
although the time duration of the simulation is extended (i.e., 1000
fs, 5000 fs, and 10 000 fs, respectively), most snapshots have their
σmax
f value at a satisfactory level, demonstrating a quick conver-

gence of the DP-GEN process. After four iterations, the models
have converged in the original cell (50 atoms), i.e., the percentage
of candidates being ∼1%.

The fifth to eighth iterations are performed with 2 × 2 × 2
supercells (200 atoms) with the percentage of candidates gradually
decreasing to 0.6%. Then, the exploration moves to disorder struc-
tures from the ninth to the sixteenth iterations. Due to the simi-
larity of the structures, only a small percentage of new configura-
tions are labeled as “candidate” in these iterations. In the last three

FIG. 4. For Li10GeP2S12, distribution of
maximum deviation of force (σmax

f ) from
iteration 1–4. Distribution of deviation
values at four temperatures is plotted,
and the two vertical lines (dashed) cor-
respond to the lower and upper bound
of the selection criteria (0.12 eV/Å and
0.25 eV/Å).
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TABLE IV. Percentage of accurate, candidate, and failed configurations in each iteration. Data are labeled with the PBE functional.

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Candidate 36.57 7.15 1.40 0.78 6.11 7.95 2.63 3.76 0.23 0.13 0.15 0.03 0.67 0.83 1.10 1.28 4.47 0.71 0.95
Accurate 16.14 81.57 95.95 98.74 92.62 91.41 97.08 96.10 99.75 99.86 99.84 99.96 99.31 99.07 98.85 98.69 95.46 99.19 99.03
Failed 47.28 11.26 2.64 0.47 1.26 0.63 0.27 0.12 0.00 0.00 0.00 0.00 0.01 0.08 0.03 0.02 0.08 0.11 0.02

iterations, the exploration is run with NVT using the experimental
lattice parameters, the same setting we use in the calculation of dif-
fusion coefficients. Still, a few candidates arise in these iterations, yet
the DP models converge within three iterations. Similar trends are
found in Li10SiP2S12 and Li10SnP2S12 systems.

Finally, around 4000 configurations in total are collected via
DP-GEN automatically to train the DP models. The protocol could
be further improved, e.g., by merging the exploration process of
ordered and disordered structures or training the universal DP
models for the “Li-SiGeSn-PS” system.

C. Accuracy and speed test of DP models
To ensure how much the DP models could speed up the sim-

ulation without losing the DFT-level accuracy, the accuracy and
speed test are performed on the whole DFT dataset. As shown in
Table V, the root-mean-square errors (RMSEs) of energies per atom
and forces are around 2 meV/atom and 80 meV/Å for two sets of
models using PBE and PBEsol functionals, and they have similar
accuracy. The diagnostic plots between DFT and DP models are
shown in Fig. 5. The low standard deviations of the four models
suggest that all potentials share similar accuracy, and the DP-GEN
scheme gives consistent errors for three different systems.

The speed test is run on one NVIDIA V100 GPU, and the
results are reported in Fig. 6. It only takes around 4 h to simulate
900-atom systems for 1 ns, and the computational cost of DP scales
nearly linearly with the system size. The high accuracy and extraor-
dinary speed make deep potential a powerful tool for large-scale
atomic simulation.

D. Simulation protocol for diffusion coefficients
1. Effect of finite-size and simulation time

Previous studies23 based on AIMD have suggested that a 200 ps
MD simulation would be sufficient to ensure the convergence of
diffusivity at high temperatures (>600 K), and this is confirmed

TABLE V. Root-mean square errors of the energies per atom (meV/atom) and forces
(meV/Å) of the DP-PBE and DP-PBEsol on the whole dataset generated from the
DP-GEN scheme. The standard deviations are evaluated using an ensemble of four
models.

Model RMSEs Li10GeP2S12 Li10SiP2S12 Li10SnP2S12

DP-PBE E 1.65 ± 0.03 1.82 ± 0.01 2.53 ± 0.02
f 82.4 ± 0.91 82.7 ± 0.19 92.5 ± 0.39

DP-PBEsol E 1.33 ± 0.06 1.33 ± 0.01 1.27 ± 0.01
f 79.6 ± 1.57 77.7 ± 0.39 77.9 ± 0.29

in Fig. 7(a). Diffusion coefficients above the level of 10−10 m2/s
(400 K and 500 K) reach very small variances and converge within 1
ns. Since the diffusivity decreases exponentially with temperature,
the statistics of diffusion processes at room temperature require
longer time to converge. At 300 K, extending the simulation to 10
ns ensures convergence of all diffusivity data with an uncertainty
of 10−12 m2/s. Thus, the time scale of 10 ns is required for the
simulation of room temperature diffusion processes.

The system-size dependence of the diffusion coefficient and vis-
cosity from MD simulations with periodic boundary conditions is
a classic topic and has been extensively discussed by, e.g., Yeh and
Hummer.68 Following the test of simulation time, analysis of the
size effect is performed with 10 ns trajectories. Here, as shown in
Fig. 7(b), a 2 × 2 × 1 supercell size (200 atoms), which was used
in most previous AIMD simulations of SSE materials,11,13 overes-
timates diffusion coefficients by 10–100 times. The diffusion coef-
ficients start to converge when systems are enlarged to 2 × 2 × 2
supercells (400 atoms). However, this system still significantly over-
estimates diffusion coefficients at 300 K. By expanding the system
to 900 atoms and 1600 atoms, we notice that the difference of diffu-
sion coefficients between them is around 3 × 10−12 m2/s. Taking into
account the results of the convergence test and speed test, we will run
simulations with 900-atom systems for 1 ns for high temperatures
(>400 K), and the simulation is lengthened to 10 ns when study-
ing the diffusion process at room temperature. This setting may still
slightly overestimate the diffusion coefficient at 300 K, but it should
give the correct magnitude of diffusion coefficients.

2. Effect of density functional on diffusion coefficient
The quality of the interatomic potential depends on the DFT

data. To the best of our knowledge, though it is suggested that
the interatomic potentials labeled by different functionals may give
different diffusion coefficients,38 there has not been any relevant
benchmark report. The diffusion coefficients calculated by DP-PBE
and DP-PBEsol models are displayed in Fig. 8. Simulated with the
experimental lattice parameters, both sets of DP models give similar
diffusion coefficients. The consistency of the diffusion coefficients
implies that though different methods give different lattice parame-
ters (the lattice parameters computed by PBE are 3% larger than that
computed by PBEsol), they do not significantly affect the calculated
diffusion coefficients.

3. Effect of thermal expansion
The lattice parameter is known to significantly affect the dif-

fusion process.9,69,70 Ong et al.9 reported the effect of expansion or
contraction of the lattice on calculated diffusion coefficients at the
same temperature. The thermal expansion is relatively small at low
temperatures (less than 1%); thus, we only evaluate the effect at the
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FIG. 5. Comparison of the energies and forces computed by DP models and DFT of the three systems Li10SiP2S12 [(a) and (d)], Li10GeP2S12 [(b) and (e)], and Li10SnP2S12
[(c) and (f)], respectively.

high temperature regime (>700 K). It is shown in Fig. 9 that at high
temperatures, the thermal expansion already leads to noticeable dif-
ferences in the computed diffusion coefficients. Thus, the effect of
thermal expansion should be considered at the whole temperature
range.

To set up an automatic workflow, it is worth exploring whether
DP models could predict the thermal expansion coefficients. To
obtain the lattice parameters at different temperatures, we equili-
brated the simulation cell with the NpT ensemble for 1 ns at different
temperatures and averaged all configurations of trajectories to cal-
culate the lattice parameters. The Li10GeP2S12-type materials belong

FIG. 6. Speed test of DP models on a NVIDIA V100 GPU. The system
(Li10GeP2S12) is scaled to different sizes to test the required simulation time.

to the tetragonal crystal lattice of which the lattice parameter a is
equivalent to lattice parameter b, and thus, the thermal expansions
of lattice parameters a and c are presented in Fig. 10. Weber et al.67

found that lattice parameters a and c exhibit linear thermal expan-
sion below 700 K and show slightly anisotropic expansion at higher
temperature. Here, we focus on the linear expansion region that is
of practical interest. The thermal expansion coefficient (αL300K) calcu-
lated by DP-PBE and DP-PBEsol are both 3.2 × 10−5 K−1, consistent
with the value 3.5 × 10−5 K−1 from the experiment.67 Thus, we con-
clude that the NpT simulations could be adopted in the protocol
to estimate thermal expansion coefficients of SSE materials for the
accurate simulation of diffusion processes.

4. Effect of configurational disorder
It has been suggested that the disordered arrangement in

SSE materials may improve diffusion coefficients.45–48 However, an
atomic insight based on sufficient MD simulations is still lacking. To
sample cation disordered configurations, a large simulation system
is required, which is beyond the ability of AIMD. By including the
disordered configurations in DP-GEN iterations, our DP models are
able to accurately simulate disordered configurations. In this test, 30
disordered configurations with 900 atoms (Li360M36P72S432, M = Si,
Ge, Sn) are randomly generated to compute diffusion coefficients.

In Fig. 11, we plot diffusion coefficients calculated with cation
site disordered structures. At low temperatures, the disorder of
cations (Ge4+ and P5+) increases the diffusion coefficients by 2–4
times. The diffusion process of Li in the Li10GeP2S12-type materi-
als could be described as the jumping events of Li between several
connected sites, each with a unique local environment. A simplified
model to explain the effect of disorder is that the disordered arrange-
ment “flatten” the potential energy surface between these sites,46 i.e.,
decrease the possible maximum energy barriers. Due to the speed-up
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FIG. 7. The convergence test of diffusion coefficients for Li10SiP2S12. Data are
computed with different (a) simulation time lengths (100 ps, 200 ps, 500 ps, 1 ns,
2 ns, 5 ns, and 10 ns) and (b) system sizes (50, 200, 400, 900, and 1600 atoms).

of the rate-determining step, the jumping process is enhanced, lead-
ing to the improvement of diffusion coefficients. The effect is not
very significant at high temperatures because the benefit is relatively
small in the systems with high diffusion coefficients.

Surprisingly, Li10GeP2S12 and Li10SiP2S12 benefit from the
disorder while configurational disorder decreases diffusion coeffi-
cients of Li10SnP2S12. These data may explain the fact that though
Li10SnP2S12 has the largest volume among the three materials, the

FIG. 8. Diffusion coefficients of Li10SiP2S12 simulated with DP-PBE and DP-PBEsol.

FIG. 9. Diffusion coefficients of Li10SiP2S12; the “fix” and “expand” data correspond
to simulations at different temperatures with fixed lattice parameters and lattice
parameters assuming linear thermal expansion, respectively.

configurational disorder of this material decreases its diffusion coef-
ficients.

Besides, it is interesting that diffusion coefficients of the dis-
ordered systems seem to follow the Arrhenius relationship at low
temperatures, while the ordered systems do not. According to the
classification of the three kinds of diffusion behaviors mentioned
in Fig. 1, one possible reason is that the ordered structures may
undergo phase transition when they are cooled down. Another pos-
sible reason is that the diffusion mechanism may change, e.g., the
diffusion path across the ab plane is shut.

To investigate the difference between ordered and disordered
structures, we analyze the radial distribution functions (RDF) of the
three systems and the results are plotted in Fig. 12. For all three
systems, configurational disorder does not change the RDF of Li–
Li and Li–S, while it slightly changes the RDF of Li–P (M = Si/Ge).
Interestingly, the RDF of Li-M (M = Si/Ge/Sn) of Li10SnP2S12 sig-
nificantly changed due to the disorder compared to Li10SiP2S12 and
Li10GeP2S12. The rearrangement of Sn and P sites may change the
local environment of Li sites in Li10SnP2S12, leading to significant

FIG. 10. Thermal expansion of Li10GeP2S12. The lattice parameters a and c are
shown. The experimental data are extracted from the study of Weber et al.67 The
lattice parameters at different temperatures are estimated by the DP-PBE models.
The dashed lines are the fitting range of thermal expansion coefficients.
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FIG. 11. Diffusion coefficients of Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12 aver-
aged from cation site ordered/disordered configurations. Note that the set of tem-
peratures studied are the same for the three materials and the data of Li10SiP2S12
and Li10SnP2S12 are slightly shifted to left and right for better visualization,
respectively.

energy differences among Li sites and thus, the suppression of diffu-
sion processes. We also notice that for both ordered and disordered
systems, the RDF of Li–P and Li–Ge in Li10GeP12S12 are quite sim-
ilar, indicating that the Li sites may have smaller energy differences

than the other two systems, which is beneficial to the diffusion pro-
cess. The physics of Li10SnP2S12 and the possible different transition
behaviors between ordered and disordered structures require future
analysis of the diffusion process, including the statistics of jumping
events between local environments.

E. Comparison to experiment
Based on the above investigation, we concluded that the effect

of thermal expansion and configurational disorder shall be consid-
ered to obtain accurate simulation results. Our results, data of previ-
ous AIMD simulations and experiments, are plotted in Fig. 13 The
computed diffusion coefficients of the three systems (Li10SiP2S12,
Li10GeP2S12, and Li10SnP2S12) are 16 ± 2 × 10−12 m2/s, 19 ± 2 ×
10−12 m2/s, and 9 ± 2 × 10−12 m2/s. In addition, the experimental
data17 are 5.8 ± 2 × 10−12 m2/s, 4.1 ± 2 × 10−12 m2/s, and 3.1 ± 2 ×
10−12 m2/s, respectively. The DP models overestimate the diffusion
coefficients at room temperature for around 5 × 10−12 m2/s–15 ×
10−12 m2/s.

The difference between experiments and simulation data com-
puted by DP models may be due to the following reasons: First,
according to the interlaboratory reproducibility study by Zeier
and the co-workers,71 the experimental reported ionic conductiv-
ities have a uncertainty up to 4.5 mS/cm [corresponding to an

FIG. 12. Radial distribution functions (RDF) of Li and other ions in Li10SiP2S12 (a), Li10GeP2S12 (b), and Li10SnP2S12 (c). RDF data of ordered and disordered configurations
are averaged from five trajectories. The dashed and solid lines correspond to ordered and disordered structures, respectively.

FIG. 13. Diffusion coefficients of the Li10SiP2S12 (a), Li10GeP2S12 (b), and Li10SnP2S12 (c) obtained from our DP-PBE models, previous AIMD simulations,11,16 and
experimental solid-state NMR results.17
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uncertainty of 1 × 10−12 m2/s–5 × 10−12 m2/s for Li10GeP2S12-
type materials)], which is similar to the overestimation given by
the DP models. The uncertainty of the experimental measurement
may be due to the synthesize settings and the impurity of materi-
als,22,65 which usually decrease the diffusion coefficients. Second, as
shown by the test of the finite-size effect, we would expect a slight
overestimation of our diffusion coefficients that are sampled by 900-
atom systems. Third, the models trained in this work could still be
improved in several aspects, e.g., by including the long-range inter-
actions and trading off between accuracy and computational cost.
Despite these, our DP models presented in this work achieve state-
of-the-art performance on the simulation of the diffusion processes
of Li10GeP2S12-type materials.

IV. CONCLUSION
In this work, we present a systematic benchmark study for the

generation, validation, and application of DP-GEN for Li10GeP2S12-
type materials. We provide an efficient automated protocol to gen-
erate DP models, and the key properties (accuracy, locality, ther-
mal expansion, and the diffusion coefficient) of the DP models are
examined. With the DP models, we establish a reliable protocol
to compute the diffusion coefficients in a wide temperature range
(300 K–1000 K). The results show that current protocols based on
AIMD simulation significantly overestimate diffusion coefficients
due to the finite-size effect and the ignorance of configurational
disorder. Although our computed diffusion coefficients still slightly
overestimate the diffusion coefficients, the errors are within experi-
mental uncertainty. The protocol should be sufficiently accurate to
be applied to run simulations to understand the diffusion mecha-
nisms of SSE materials. With the verified protocols, we notice that
the effect of configurational disorder may depend on the materi-
als, i.e., Li10SnP2S12 shows a different behavior from Li10GeP2S12
and Li10SiP2S12. The data generated in this work could be a starting
point for research of doping and replacement of Li10GeP2S12-type
materials in the future.72,76–80
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