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ABSTRACT

Rechargeable magnesium batteries (RMBs) have emerged as a promising next-generation electrochemical energy storage
technology due to their superiority of low price and high safety. However, the practical applications of RMBs are severely limited
by immature electrode materials. Especially, the high-rate cathode materials are highly desired. Herein, we propose a dual-
functional design of V,0O; electrode with rational honeycomb-like structure and rich oxygen vacancies to enhance the kinetics
synergistically. The result demonstrates that oxygen vacancies can not only boost the intrinsic electronic conductivity of V,0s, but
also enhance the Mg* diffusion kinetics inside the cathode, leading to the good high-rate performance. Moreover, ex-situ X-ray
diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) characterizations reveal
that Mg* is mainly intercalated from the (101) plane of V,0O;, based on the insertion-type electrochemical mechanism;
meanwhile, the highly reversible structure evolution during Mg* insertion/extraction is also verified. This work proposes that the
dual-functional design of electrode has a great influence in enhancing the electrochemical performance of cathode materials for
RMBs.
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RMBs is still Mo,S, reported by Aurbach et al. [48]. In spite of the
remarkable cycling performance, the limited specific capacity
(only 80 mAh-g") and the low working potential (1.1 V wvs.
Mg*/Mg) hinder its further practical application. Our group
proposed a Na,V,(PO,),/C/G cathode with the high operating
potential of 2.47 V vs. Mg*/Mg to effectively enhance the energy
density of RMBs in 2019 [49]. Despite the higher working voltage
of Na,V,(PO,),/C/G, the low discharge capacity of 66 mAh-g™ is
not satisfactory. To further improve the energy density of RMBs,
researchers focused their attention on the metal oxide [50-52].
Among them, V,0; is concerned by scientists owing to its
impressive capacity and high operating potential. Nevertheless, in
RMBs, V,0; failed to show the impressive electrochemical
performance because of the strong electrostatic interaction
between bivalent Mg™ and lattice oxygen of V,O; [53, 54].

Many efforts have been devoted to enhance the electrochemical

1 Introduction

Lithium ion batteries (LIBs) have been widely commercialized
owing to their high energy density [1, 2]. However, in recent years,
the application of large-scale energy storage devices has presented
stricter requirements on LIBs in terms of cost and safety [3-6].
Tremendous efforts have been devoted to develop other low-
priced and high security batteries beyond LIBs for large-scale
energy storage applications [7-15]. Among them, rechargeable
magnesium batteries (RMBs) have attracted unprecedented
attention owing to their high theoretical volume specific capacity
(3,833 mAh-cm™), low electrode potential (—2.37 V vs. standard
hydrogen electrode (SHE)), and rich abundance on earth [16-26].
Despite the above theoretical superiorities of RMBs, the
development of RMBs is still hindered by some intrinsic and
nonnegligible obstacles [27-36]. One of the most challenging task
is to explore suitable cathode materials [37-42]. Differing from Li",

divalent Mg* has a stronger charge density, leading to the stronger
electrostatic interactions between Mg* and the lattice of cathode
materials. This inherent characteristic results in the sluggish
dynamics of Mg* inside the conventional cathode materials.
Therefore, developing cathode materials with fast kinetics of Mg**
has become one of the greatest challenges in RMBs [43-47].
Nowadays, one of the most widely used cathode materials for

performance of V,O; for RMBs. Novak et al. proposed a strategy
which introduced H.,O in electrolyte to enhance the capability of
the insertion/extraction of Mg* [55]. The introduction of water
can effectively reduce the electrostatic interaction between Mg™
and lattice oxygen of the host material to promote the
transmission of Mg* in V,0, However, limited cycling
performance and side reaction between Mg foil and H,O hinder
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the development of this strategy. Besides, Perera et al. utilized poly
(ethylene oxide) to enhance the diffusion kinetics of Mg* [56].
Nevertheless, the cycling performance and rate performance are
limited. Recently, modification of oxygen vacancies in the
crystalline host of electrode materials has been proved to be
effective in improving the electrochemical performance by
providing abundant active sites and enhanced diffusion rate,
which inspired us to use this defect engineering strategy in V,0,
for RMBs. For instance, Jin et al. prepared black TiO, ; with rich
oxygen vacancies to achieve the high-performance RMBs [57].
The oxygen vacancies inside cathode can not only reduce the
migration energy barrier of Mg, but also improve the
conductivity of the cathode material and enhance the rate
performance for ions storage. Furthermore, our previous work
also proves oxygen vacancies are conducive to the insertion of Mg
from the simulation calculations [58].

Here, we propose a binder-free and honeycomb-like V,0O; «
electrode on Ti foil with rich oxygen vacancies (denoted as Ti-
V,0; ) for RMBs. The presence of oxygen vacancies in Ti-V,0; »
electrode can not only increase the intrinsic electronic
conductivity of V,0, but also enhance the diffusion kinetics of
Mg”. Besides, the honeycomb-like electrode can increase the
contact area between the active material and electrolyte and
shorten the transmission path of Mg* inside the cathode.
Benefitting from the unique structure, the as-prepared Ti-V,0; «
electrode presents the improved discharge specific capacity,
cycling performance, and rate performance. The Mg storage
mechanism was investigated by a series of ex-situ characterization
analysis. This work demonstrates the introduction of defects can
enhance the electrochemical performance of RMBs and proposes
a facile approach for preparation of cathode with rich oxygen
vacancies.

2 Experimental

2.1 Synthesis of Ti-V,0;

For a typical procedure, 0.3 g NH,VO, was dissolved in 75 mL
water. The solution was heated at 75 °C with vigorous stirring
until the color of the solution turned yellowy. Afterward, the
hydrochloric acid was added drop by drop to the clear solution to
adjust the pH value to 2. After 10 min, the solution was
transferred into a Teflon lined stainless steel autoclave and the Ti
foil (3 cm x 6 cm x 0.01 mm) was immersed in the mixed
solution. Subsequently, the mixture was maintained at 180 °C for
10 h. The Ti-V precursor was washed with water for 3 times,
followed by drying at 80 °C. Finally, the Ti-V precursor was
calcined under Ar atmosphere at 400 °C for 2 h to obtain Ti-
V.0, x. In addition, Ti-V,O; was prepared by the same method
except that the Ti-V precursor was calcined in air.

2.2 Materials characterization

The X-ray diffraction (XRD) information was collected by a
Rigagku Miniflex 600 X-ray diffractometer. The morphologies
were investigated by scanning electron microscopy (SEM, Zeiss
Gemini SEM 500) and transmission electron microscope (TEM,
Tecnai F30). The X-ray photoelectron spectroscopy (XPS) data
were obtained by PHI Quantum 2000. Electrochemical impedance
spectra (EIS) were ascertained by a Solartron 1260A and 1287A
impedance/gain-phase analyzer.

2.3 Electrochemical measurements

The Ti-V,0;  and Ti-V,0; electrodes were punched into round
discs with a diameter of 12 mm to serve as the cathode of RMBs
directly. The CR2032 coin cells were assembled including the as-
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prepared cathode, 0.5 M Mg(ClO,),/acetonitrile electrolyte,
Celgard 2400 separator and active carbon electrode counter
electrode [59]. The cyclic voltammetry (CV) was operated using
the CHI 660E multipotentiostat (Chenhua) at 0.3 mV-s™. And the
mass loading of active materials in electrode was about 0.35
mgcm™ The V,0; , and V,0, powders were scraped from the
electrodes with a spatula. For the galvanostatic intermittent
titration  technique (GITT) tests, the batteries were
discharged/charged at 50 mA-g™ for 600 s and paused for 1 h. All
the EIS were carried out by the full discharge stated cell. All the
electrochemical measurements were tested at room temperature.

3 Result and discussion

The synthesis process of Ti-V,O; y is shown in Fig. 1(a). First of all,
the Ti foil reacted with the solution containing vanadium at
180 °C. After the reaction finished, the honeycomb-like Ti-V
precursor was collected, washed and dried. Finally, the Ti-V
precursor was calcined at 400 °C under Ar atmosphere to acquire
the Ti-V,0O,, with rich oxygen vacancies. The Ti-V,0; was
prepared by the same method except that the Ti-V precursor was
calcined in air. The SEM image of Ti-V precursor is shown in Fig.
S1 in the Electronic Supplementary Material (ESM). The SEM
images of Ti-V,0;, and Ti-V,0O; y are shown in Figs. 1(b) and 1(c),
respectively. Similar to the morphology of Ti-V precursor, both Ti-
V,0; and Ti-V,0; « samples have a honeycomb structure while the
Ti-V,0; , has a smaller pore, indicating the larger specific area of
Ti-V,0; « and larger contact area between Ti-V,0O; y electrode and
electrolyte. Besides, porosity is an important parameter to measure
the specific surface area of materials. The porosities of these two
electrodes were calculated based on Eq. (1)

p= (1— P“) % 100% (1)
p

The optical photographs of thickness tests about Ti-V,0,
electrodes and Ti-V,O; y electrodes are shown in Fig.S2 in the
ESM. The mass loading is about 0.4 mg. The thickness of the

T e

Figure1 (a) Schematic illustration of the synthesis of Ti-V,0O, . SEM images
of (b) Ti-V,0; and (¢) Ti-V,O, . (d) TEM image and (¢) HRTEM image of
V.0 . (f) The elemental mapping of Ti-V,0; .
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untreated Ti foil is 0.01 mm. As a result, the thickness of the V,0O,
is about 0.04 mm and the thickness of the V,0,  is about 0.05
mm. After calculations, the porosity of the Ti-V,O; y electrode is
76.25% while the porosity of the Ti-V,0; electrode is 70.31%,
indicating the Ti-V,0; , electrode has a higher specific surface
area. As shown in Figs. 1(d) and 1(e), the TEM image of V,0O
shows the sheet structure of V,0; and the HRTEM image of
V,0; « exhibits clear lattice fringes of 0.339 nm, which matches
well with the (101) plane of V,O,. As shown in Fig. 1(f), the
elemental mapping of Ti-V,0,, fully proves the uniform
distribution of V and O elements in the Ti-V,O, , electrode.

Figure 2(a) shows that the XRD patterns of Ti-V,0; , electrode
and the Ti-V,O; electrode are in accordance with V,0, (JCPDS.
No. 74-1595) and Ti (JCPDS. No. 05-0682). To further verify the
purity of samples, the XRD patterns of Ti-V,O, , powder and Ti-
V.0, powder were also obtained. Figure S3 in the ESM exhibits
that the XRD patterns of V,O, , powder and the V,0O, powder can
be well matched with V,O, (JCPDS. No. 74-1595), indicating the
successful preparation of pure V,0O; on the Ti foil. Besides, the
electron paramagnetic resonance (EPR) spectra of the V,O,,
powder and the V,0, powder were performed to prove the
existence of oxygen vacancies. In Fig.2(b), the V,0O, powder
exhibits the significant EPR signal with a g value of 1.95 while the
V.0, powder shows a negligible EPR signal, which indicates that
V,O; « has richer oxygen vacancies than V,0,. Moreover, the XPS
spectra of V,0, and V,0O; also prove the existence of oxygen
vacancies in V,0; . As shown in Fig. 2(c), the binding energies of
V 2p in V,0, y are lower than those of V,O;, implying more V* in
V,0s . And the XPS of O 1s also provides strong evidence to
prove the existence of oxygen vacancies (Fig.2(d)). The wider
peak located at 532.1 eV implies the missing of lattice O inside the
V,O;x. All the morphology and phase -characterizations
demonstrate that the honeycomb-like Ti-V,O; , with rich oxygen

(a)

(b)

3

vacancies has been synthesized successfully.

To evaluate Mg* storage properties of as-prepared Ti-V,0;
and Ti-V,0O; samples, various electrochemical measurements were
performed. The discharge-charge profiles of Ti-V,0, , and Ti-
V,O; are shown in Fig. 3(a). The Ti-V,0, shows the pristine
discharge and charge capacities are 241.3 and 240.0 mAh-g”,
respectively, corresponding to the initial Coulombic efficiency of
99.46%. However, Ti-V,0, exhibits the pristine discharge and
charge capacities are 1824 and 163.1 mAh-g’, respectively,
corresponding to the initial Coulombic efficiency of 89.42%. Ti-
V,O;« has not only higher capacity, but also higher Coulombic
efficiency, indicating the oxygen vacancies are of great importance
to enhance the magnesium storage capacity. Besides, as shown in
Fig. 3(b), the first two cycles of CV profiles of Ti-V,O; and Ti-
V,0; also indicate that the Ti-V,0; electrode shows the higher
storage capacity of magnesium. The reversible couple of peaks
present the redox of the V**/V* and the small polarization of Ti-
V,O; indicates the better rate performance of Ti-V,O, . Figure
3(c) exhibits the cycling performance of two samples at 100
mA-g". After 400 cycles, the high reversible discharge capacity of
1954 mAh-g' can be retained in Ti-V,0; with rich oxygen
vacancies. However, Ti-V,0; maintains a discharge capacity of
97.9 mAh-g™ after 400 cycles, indicating that the honeycomb-like
structure plays an important role in improving the electrochemical
performance. As shown in Fig. 3(d), Ti-V,O; delivers the discharge
capacity of 175.9, 138.3, 90.0, 69.2, and 57.2 mAh-g™, respectively,
as the current density is stepwise increased from 100, 200, 300,
400, and 500 mA-g™. Specially, when the current density returns to
100 mA-g", the as-prepared Ti-V,O; electrode still can deliver the
pristine discharge capacity, indicating the advantages of
honeycomb-like electrode structural design. Furthermore, the Ti-
V,0O;_ electrode combines the honeycomb-like structure with rich
oxygen vacancies to achieve more superior rate performance. Ti-
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Figure2 (a) XRD patterns of the Ti-V,0; yand Ti-V,O;. (b) EPR spectra of the V,0O, yand V,0.. The XPS spectra of (c) V 2p and (d) O 1s of the V,0O, yand V,O..
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Figure3 (a) The discharge-charge profiles of Ti-V,0O; yand Ti-V,0.. (b) The first two cycles of CV profiles of Ti-V,0; y and Ti-V,0.. (c) The cycling performance

of Ti-V,0; y and Ti-V,0;. (d) The rate performance of Ti-V,0; , and Ti-V,O.

V,0; « delivers the discharge capacity of 245.4, 205.8, 174.8, 157.0,
and 148.0 mAh-g' at 100, 200, 300, 400, and 500 mA-g’,
respectively, indicating the faster diffusion kinetics in the Ti-V,0 «
electrode with rich oxygen vacancies.

To investigate the structural change of Ti-V,0; , for the Mg*
storage, the ex-situ XRD of Ti-V,0, in different states was
conducted (Figs. 4(a) and 4(b)). As shown in Fig.4(c), a new
obvious peak around 26.8° appears during the discharge process.
The peak can be matched well with the (111) plane of MgV,0;
(JCPDS. No. 89-1245). Besides, the initial peak (101) at 26.1° of
V,0O; « also shifts to a lower angle of 24.7° when the Ti-V,0; y is
discharged from the pristine state to 1.75 V vs. Mg**/Mg, implying
the increase of the interplanar crystal spacing of V,O; . These
results indicate that this reaction mechanism is based on the
intercalation-type Mg™ storage mechanism and Mg is mainly
intercalated from the (101) plane of V,0; , during the discharge
process, leading to the increase in the interlayer spacing (101) and
the formation of new MgV,O; phase. When Ti-V,0; y is charged
to 3.35 V vs. Mg*/Mg, all the diffraction peaks of the Ti-V,0;
electrode return to the pristine state, implying the outstanding
structural stability of Ti-V,O, during the electrochemical
measurements.

To further study the internal reaction mechanism, ex-situ XPS
spectra were recorded. As shown in Fig. 4(d), the obvious signal of
Mg 1s is observed in the full discharged Ti-V,O;, electrode,
indicating the insertion of Mg*. And the weak characteristic peak
of Mg 1s in full charged Ti-V,0; x electrode implies the extraction
of Mg*. The XPS spectra of V 2p are shown in Fig. 4(e). The peaks
located at 517.2 and 524.9 eV can be considered as V** and the
peaks located at 515.8 and 523.2 eV can be considered as V*. The
XPS spectrum of V 2p of the initial Ti-V,0; , shows an obvious
signal of V*, indicating the existence of oxygen vacancies in the
initial Ti-V,O; . As the discharge reaction progresses, the binding
energy of V 2p shifts to a lower energy and the ratio of V**/V* is
obviously reduced, representing the successful intercalation of
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Mg* inside the Ti-V,0;  electrode. When the Ti-V,0;  electrode
is charged to 3.35 V vs. Mg*/Mg, the XPS spectrum of V 2p shows
a same peak distribution with that of the initial state, implying the
remarkable reversibility of Ti-V,O; . Furthermore, as shown in
Fig. 4(f), the elemental mapping of the full discharged Ti-V,0;
electrode illustrates that all the elements are uniformly distributed,
indicating the intercalation of Mg™ inside the Ti-V,O; y electrode
during the discharge process.

To get further insights into the changes of crystal structure
during electrochemical measurements, TEM images and selected
area electron diffraction (SAED) patterns of the Ti-V,0,
electrode in different states were also taken. As shown in Fig. 5, the
Ti-V,0;, , electrode maintains the nanosheet structure during
electrochemical measurements. Besides, before cycling, the clear
lattice fringes of 0.339 nm can be observed, corresponding to the
(101) plane (Fig. 5(b)) and the corresponding SAED image also
proves the purity of the Ti-V,O;  electrode (Fig. 5(c)). As shown
in Fig. 5(e), as Mg* is inserted into the Ti-V,O; y electrode, the
lattice spacing of (101) plane is increased to 0.359 nm. Meanwhile,
the new lattice plane appears, corresponding to the (111) plane of
MgV,O,. As shown in Fig.5(f), the SAED image of the full
discharged Ti-V,0O; « electrode also proves this change of crystal
structure. As shown in Figs. 5(h) and 5(i), when the Ti-V,0;
electrode is charged to the full charged state, the lattice spacing of
(101) plane and SAED image are in keeping with the pristine
electrode, indicating the remarkable structural stability of Ti-
V,0O; « electrode during the electrochemical measurements.

Besides, in order to further verify the structural stability of the
Ti-V,0; y electrode, the SEM images of Ti-V,0; , electrode before
and after cycling are taken. As shown in Fig. S4(a) in the ESM, the
honeycomb-like structure is strong enough to survive from the
pressure during battery assembling. And after 50 cycles, as shown
in Fig. S4(b) in the ESM, the honeycomb-like structure of the Ti-
V,O; « electrode still maintains as the initial state, implying the
outstanding structural stability of the Ti-V,O; x electrode during

@ Springer | www.editorialmanager.com/nare/default.asp
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Figure5 (a) TEM image, (b) HRTEM image, and (c) SAED pattern of the initial Ti-V,0; ; (d) TEM image, (¢) HRTEM image, and (f) SAED pattern of the

discharged Ti-V,0; ; (g) TEM image, (h) HRTEM image, and (i) SAED pattern of the charged Ti-V,0; .

the electrochemical tests.
The ionic diffusion coefficient inside the electrode plays a key

role in cathode materials. To figure out the role of oxygen
vacancies inside the Ti-V,0O,,, GITT measurements were

materials can be obtained using the following equation

conducted. The diffusion coefficient of Mg* (D,,”) in cathode

4 (myV,
DMgH» - _<£
T

L2
DMgz+

) () (=5) @

M;A
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where m, and M, are the mass loading (about 0.40 mg) and
molecular weight (181.88 g-mol™) of V,O,, respectively; V,, is the
molar volume of V,0; (54.18 cm®mol™); A is the surface area of
electrode (1.13 cm?); AEj is the potential difference of the steady-
state voltage during the rest process; AE, is the potential change
through a discharge pulse without including IR drop; L is the
thickness of the electrode (about 50 pm). As shown in Fig. 6(a),
the GITT tests of the Ti-V,O;  were carried out. After calculating
from the GITT results, the value of D,/ is acquired. As shown in
Fig. 6(b), the D" of Ti-V,O;  is in the order of 107*-10™ cm*s™,
which is higher than that of Ti-V,0,, corroborating that oxygen
vacancies have great importance in enhancing the ionic diffusion
coefficient. Moreover, the Nyquist plots and fitted results of the Ti-
V.0, « electrode and Ti-V,0; electrode were also conducted to get
further insights into the kinetics of Ti-V,0O; « electrode. As shown
in Fig. 6(c), obviously, the Ti-V,O;  electrode displays a lower
resistance of charge transfer (R.) of 206.4 Q while the R, of Ti-
V.0; electrode is 382.6 Q2. Furthermore, the D,/ of the cathode
materials was also measured by the Warburg region according to
the following equations

RT ’ 2Dy

Z =R +R,+Aw" (4)

where R is the gas constant; T is the absolute temperature; 7 is the
number of electrons transferred during the first cycle; F is the

Nano Res.

consistent with the GITT results. The D, of as-prepared
cathodes in the full discharged state is 7.64 x 10™ and 4.96 x 10™
cm?s™, respectively.

Besides, the activation energy of these two samples was
calculated with the results of EIS through the following equation

1/R, = Aexp(—E,/RT) (5)

where A is the frequency factor; R is the gas constant, and T is the
absolute temperature. As shown in Figs. S5(a) and S5(b), the R, of
Ti-V,O, , electrode is lower than that of Ti-V,0O, electrode at
different temperatures. After calculations, as shown in Fig. S5(c) in
the ESM, the E, for the Ti-V,O; ; electrode is about 10.94 kJ-mol™,
which is lower than that for the Ti-V,O, electrode (22.38 kJ-mol™).
The above results prove that the Ti-V,0;  electrode has the faster
kinetics than Ti-V,0O; electrode and oxygen vacancies can
effectively enhance the ionic diffusion coefficient of the Ti-V,0; «
electrode.

Furthermore, the electronic conductivities of V,0O, and V,0;
powders were also investigated. As shown in Table S1 in the ESM,
the electronic conductivity of V,0;, is 2.6 times that of V,O,,
indicating that the introducing oxygen vacancies into the Ti-
V,0,« cathode also can improve the intrinsic electronic
conductivity. The improvements of electronic conduction and
ionic diffusion coefficient of V,0,y are the key points for
enhancing the electrochemical performance of RMBs.

Tablel R,A,and D, of Ti-V,0; yand Ti-V,0; electrodes

Faraday’s constant; c is the concentration of Mg* in the Ti-V,0, « Sample R, (Q) A, (Qs) Dy (cm*s™)
elﬁctliode(;1 11-:nd A, is the W:}rlburg coefficient ;ncgh itsbvalue czilgﬂbe Ti-V,0, 206.4 358 1 764 % 10"
calculate Eq. (3). R, is the resistance inside the battery. After
. Y =9 ( ) y . Ty Ly . Ti-V,0, 382.6 412.2 4.96 x 10™
calculation, the relevant parameters are shown in Table 1, which is
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Ti-V,0; y electrode and Ti-V,0O; electrode. (d) The relationship between the real part of impedance and low frequencies.

E‘N%IEEISQYILEQ @ Springer | www.editorialmanager.com/nare/default.asp



Nano Res.

4 Conclusion

In summary, in this work, a bind-free and honeycomb-like Ti-
V.0, cathode with rich oxygen vacancies was successfully
synthesized for RMBs. The Ti-V,0;  electrode delivers a high
discharge capacity of 241.3 mAhg” at 100 mA-g* and high
Coulombic efficiency during cycling. After 400 cycles, the Ti-
VO, electrode still maintains the high reversible discharge
capacity of 1954 mAh-g”. Moreover, the Ti-V,O; , delivers the
discharge capacity of 245.4, 205.8, 174.8, 157.0, and 148.0 mAh-g"
at 100, 200, 300, 400, and 500 mA-g", respectively. Interestingly,
when the current density returns to 100 mA-g™, the as-prepared Ti-
V.0; y electrode can still deliver the initial discharge capacity and it
can continue to cycle stably with the initial discharge capacity,
indicating the advantages of electrode structural design of Ti-
V.0, . Besides, the insertion-type electrochemical mechanism was
also investigated by ex-situ XRD, TEM, and XPS characterizations.
More importantly, the importance of oxygen vacancies was
confirmed by the measurements of ionic diffusion coefficient and
electronic conduction. The presence of oxygen vacancies can not
only increase the intrinsic electronic conduction of V,0O;, but also
enhance the ionic diffusion coefficient. This work proposes that
the engineering of defects plays a vital role in enhancing the
electrochemical performance of cathode materials for multivalent
batteries.
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