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The capacity degradation and occurrence of safety hazards of lithium ion batteries are closely associated with various adverse side
electrochemical reactions. Nevertheless, these side reactions are non-linearly intertwined with each other and evolve dynamically
with increasing cycles, imposing a major barrier for fast prediction of capacity decay of lithium ion batteries. By treating the battery
as a black box, the machine-learning-oriented approach can achieve prediction with promising accuracy. Herein, a numerical-
simulation—based machine learning model is developed for predicting battery capacity before failure. Based on the deterioration
mechanism of the battery, numerical model was applied to test data from only 25 batterie to extend 144 groups data, resulting in the
digital-twin datasets, which can reliably predict the maximum total accumulative capacity of the lithium ion batteries, with an error
less than 2%. The workflow with iterative training dramatically accelerates the capacity prediction process and saves 99% of the
experimental cost.
© 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ac95d2]
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Commercial lithium ion batteries have been widely applied in
mobile devices, which will contribute to carbon neutrality.1–5 Along
with the development of high performance materials of lithium ion
battery, the battery manage system (BMS) is also of great impor-
tance which governs the steady operation of the batteries under
various working conditions.6–9 One of the greatest challenges of
BMS is associated with the prediction of the evolution of the battery
capacity.10–13

The capacity of a battery is one of the key performance
parameters for battery system,14,15 which plays an important role
in regulating the health and safe operation of the battery.16,17 In a
rechargeable lithium ion battery, the energy conversion and storage
process is fundamentally built on a reversible electrochemical
reaction taking place at the interface between electrode and electro-
lyte as well as the bulk electrode materials. Therefore, at atomic-
level, the lithium ion diffusion kinetics both across the solid
electrolyte interphase and in the bulk phase of the active materials
on both cathode and anode, and electron conduction and charge
transfer efficiency across the various solid-solid interfaces within the
three-dimensional electrode network play a profound role in
determining the battery performance. Theoretically, the kinetics of
these electrochemical processes depend primarily on the inherent
quality of the battery which is an assembly of the electrode
materials, the electrolyte, the separator and the current collector,
which eventually governs the performance of a battery.
Nevertheless, in reality, the operando parameters under which a
battery works is also of great significance in determining its actual
energy conversion efficiency.18 For instance, among various para-
meters, the working temperature, according to the Arrhenius
equation, plays an important role in determining the electrochemical
reaction kinetics19; other factors such as the charge or discharge
current density affects the polarization, which also imposes im-
portant impacts on the capacity.

The capacity degradation of a lithium ion battery occurs
inevitably. Overall, it is a consequence of the irreversibility of the
electrochemical reactions. In detail, it originates from different side
electrochemical reactions, which slows down the interfacial lithium

intercalation and deintercalation kinetics and decreases the energy
conversion efficiency; it is often associated with the loss of active
cathode or anode material and the deterioration of ionic kinetics. For
instance, the irreversible structural changes caused by high degree of
delithiation and the bulky solid-liquid interface from excessive
decomposition of electrolyte at high cut-off voltage in cathode leads
to the severe capacity loss20–22; the deposition of “dead lithium” or
lithium dendrite occurred in the anode not only consume active
lithium which directly correlates to the capacity and coulombic
efficiency, but also causes safety hazards.

In view of the complicacy of a battery system, they will be used
more safely when the capacity fade mode of a battery is available.
Nevertheless, the above-mentioned side reactions occur both in the
interface and in the bulk of the material are intricately interlaced
with each other, which pose a grand barrier for accurate capacity
prediction.20,23,24 For instance, the increasing of thickness of solid
electrolyte interphase (SEI), generated at the surface of anode, will
affect the ion transport and increase the electrochemical
polarization.25,26 Meanwhile, severer polarization will increase the
chance for occurrence of lithium dendrite,27 which leads to more SEI
and causes safety hazards.28–30 Additionally, both the electrolyte and
the active material suffer from varying degrees of degradation during
the cycling life.31–37 In this scenario, thanks to the development of
high performance computers and breakthroughs in algorithms, the
numerical simulations based on pseudo-two-dimensions (P2D)
model, which takes the side reactions into consideration, have
been applied for battery capacity prediction.27,30,38–40 However, it
remains a challenge to construct a realistic simulation model that
could simultaneously consider the multiple parameters widely
ranging from physicochemical factors to even mechanical
property.41–44 What’s more, the side reactions in P2D model lack
an unifying perspective, particularly in terms of the equations and
intertwine effects.

In line with the above issue, machine learning (ML), as a
powerful technology, turns out to be an effective tool for addressing
the aforementioned problems.38,45–51 The major merit of this method
is that it can function properly even without the prerequisite
knowledge of degradation mechanisms.38,52,53 Machine learning
that treat the battery as a black box can achieve good performance
has become the interest in the battery capacity prediction. It thus haszE-mail: jbzhao@xmu.edu.cn
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become the interest in the field of battery capacity prediction.
According to some successful machine learning researches, the
features which have statistically significant correlations with the
capacity can be screened and selected for capacity predicting.45,46

However, the drawback of this approach is that massive real datasets
are needed for training. This could be a real issue when it comes to a
battery, since the long cycle life span of the battery would require
equivalently long testing time for construction of necessary data-
bases. Besides, the cost of the experimental testing to obtain the
necessary dataset would be enormous and make it cannot to be a
routine way for research. Obviously, the scarcity of real experi-
mental data is destined to be a main obstacles to carry out machine
learning in pursuing reliable prediction of the total capacity
throughout the whole cycle life.54–56

In complement to machine learning, the digital-twin emerging as
an alternative have also been applied for capacity prediction.38,57,58

This method, based on limited experimental data and electroche-
mical theory, can ensure high-quality extension of training datasets
from numerical simulation. That is, the digital-twin method can fuse
both merits of the above-mentioned model-based P2D method and
data-driven machine learning, which thus enable easier and more
reliable performance monitoring of a battery.59 Digital twin tech-
nology can reasonably solve the problem of high test cost for
acquiring massive experimental data, while ensuring the fidelity of
training data for machine learning, so as to achieve reliable and
stable behavior monitoring, prediction, evaluation and optimization
during the battery life cycle.57,60 So far as we know, such digital-
twin method has not been deployed for capacity prediction of lithium
ion battery.

In this work, a novel workflow based on limited experimental test
data is proposed to predict the capacity of a battery built with
LiNi0.8Co0.1Mn0.1O2/Graphite@SiOx battery. To identify the op-
timal operation condition which ensures the maximum total accu-
mulative capacity releasing during cycle life, a numerical-simula-
tion-based machine learning model is built to predict the battery
degeneration behaviors. Based on the deterioration mechanism, the
features highly related with the capacity fading were screened and
adopted for the simulation model building. Based on the electro-
chemical theory, the numerical-simulation-based models with side
reactions are calibrated and employed to create batches of high-
quality training data for the machine learning training. The resulting
digital-twin datasets were deployed for machine learning to provide
high-precision predictions of total accumulative capacity throughout
the cycle life; the prediction error was found to be less than 2%, and
the cost can be reduced by 99%.

Experimental

Battery capacity fade test data.—25 experimental high capacity
density LiNi0.8Co0.1Mn0.1O2/Graphite@SiOx lithium ion batteries
were measured in this work. The battery was designed with the
capacity 3Ah during the voltage windows of 2.75–4.2 V. All the
battery tests are proceeded under the protocol of constant current-
constant voltage (CC-CV). More detail information of the battery
was listed in the supporting information.

The total capacity is calculated as the follows describe

∑= ˆ( ˆ > · )Q y y y80%sum

n

1
0

.—Where y0 is the initial discharge capacity during the first cycle.
Note that, some batteries cycle life before failure bigger than 1000
cycles. In order to simplify the result, the total capacity calculation
obeys another rule that all the capacity summed during the 1000
cycles.

FEM simulation.—The pseudo-two-dimensions model is built
with the COMSOL Multiphysics platform. The 1D lithium ion

battery model adds side reactions to simulate the capacity fade. Four
different reactions contain negative electrode SEI formation
(Graphite, SiOx), active particle fragmentation (NCM811, SiOx).
The SEI formation is expressed as the cathodic Tafel equation. In
addition, particle fragmentation is described as the Arrhenius
equation. The temperature, rate, working voltage windows affect
the reaction rate constant and result in different forms of capacity
fade. The model calibration process relies on experience to adjust
parameters to achieve consistency with experimental data.

Machine-learning model development.—The algorithms used in
this research are Neural Network (NN) and random forest trees (RF).
The NN is used to solve the regression problems (capacity fade
fitting and prediction), whereas, the RF method is used for the
classification (feature importance analysis). The NN model has the
multi-layer perceptron (MLP) that trains using backpropagation
which has the advantage in solving the non-linear problems. The
NN model takes the form as follow proposed:

( ) = ( + ) +f x W g W x b bT
2 1 1 2

Where W ,1 W2 represent the weights of the input layer and hidden
layer, b ,1 b2 are model parameters. ( )g x is the activation function.
The weights of NN are calculated in the training process by
minimizing the square error loss function. Mathematically, the
model train with ℓ2 regularization by penalizing weights with large
magnitudes to avoid overfitting. The loss function written as,

α( ˆ ) = ˆ − +Loss y y W y y W, ,
1

2 22
2

2
2Where the ŷ is the predicted

capacity, y is the test capacity. The weight was updated by
backward-propagation from the output layer to the former layers.
The backward-propagation is based on the stochastic gradient
descent technique.

The predicted error refers to the actual measurement results, and
the calculation process is as follows:

∑= ∣ ˆ − ∣ *y y

yn
Error 100%

n

1

Where the ŷ is the prediction capacity, the y is the test capacity. The
n is the cycle number. The computation process has been added in
the manuscript.

All features in NN train data are standardized to have mean 0 and
variance 1 for fasting converges and getting better solutions. To
avoid overfitting, the data are randomly split into training and test
sets with the ratio of 0.8:0.2. When the reporting performance
measures on the test set, we instead choose to focus on the mean
absolute error that is more intuitive than the root means squared
error. RMSE is defined as follow:

∑= = ( ˆ − )
=

RMSE
n

i y y
1

1
i

n

1

2

The result predicted by NN is put in the RF model for features
importance analysis. RF is the ensemble methods which generates
hundreds of decision trees. The model output is dependent on the
average of all the trees. We control the number of trees to get
excellent performance and accuracy. The relative importance of the
features could be got from the relative depth (i.e., expected fraction
of the samples) of a feature used as a decision node in a tree.
Permutation feature importance is computed in the RF model. The
features are shuffled 10 times and the model is refitted to estimate
the importance.

A step-by-step introduction. First of all, the data collected from
the experiment was used to calibrate the COMSOL simulation
model, and a high-precision simulation model achieved by control-
ling the side reaction parameters. Then, used the scanning function
of COMSOL to output batch simulation data. Next, these simulation
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data was applied for machine learning training and prediction. The
above continuous behavior is an iterative process. When the machine
learning outputs the target results, the verify experiments was used
to check the result. The error between the experimental data and the
predicted data determine the reliable of digital twin output. If the
results are not reliable, the results of the verification experiments are
re-input into COMSOL for calibration, and the next iteration process
is carried out until the results of the digital twin are reliable.

The data processing and machine learning (regression and feature
importance analysis) are played in Python with Anaconda, Scikit-
learn package, NumPy, Panda. The visualization were illustrated
with Python and MATLAB. The FEM simulation model of lithium
ion battery is built in COMSOL Multiphysics.

Machine Learning Model

Battery performance.—Several factors may impact the perfor-
mance of battery cycling capacity, such as cycle rate, temperature,
cut-off voltage (COV), operation windows and so on. The capacity
fading exhibits diverse modes under different operation conditions.
Herein, these factors have varying influences on the total energy
release of the battery during the life cycle (Fig. 1A). In our previous
research,39 the processes of battery degradation has the highly non-
linear and coupled natures (Fig. S1). Remarkably, the difference of
the total accumulative capacity released during the life cycle may
vary by up to 5 times (Fig. S2). As a result, the industry’s primary
concern should be the battery’s operation condition for the max-
imum total accumulative capacity releasing. Further research and
engineering optimization may be of great scientific significance in
addressing this concern and improving the better’s performance.

Our research attempts to address the challenge: prediction of the
best performance with limited number of experimental battery data.
Only 25 batteries cycling data serves as the starting point for
predicting the battery life cycle. The 25 batteries are performed with
25 different cycling protocols, contains different temperatures (25
°C, 35 °C, 60 °C), cut-off voltage (2.75–4.0 V, 2.75–4.2 V,

3–4.05 V, 3–4.25 V), rate (1 C, 2 C, 3 C). The important features
related to the capacity fade is adopted to get reliable result (Fig. 1B).
Those data used in prediction model is not sufficient so can’t ensure
the accuracy of the result. Digital-twins as the powerful magic
weapon in the dilemma of lacking real data is used to extend high-
quality datasets. The sight is drawn to the finite element model
(FEM) simulation to extend the training sets for digital-twins. Based
on the theory of electrochemical and fading, the numerical simula-
tion model could output batches of data which ensure adequate
sample for the machine learning model training.

FEM simulation.—The machine learning model based on
limited experimental datasets has limited confidence interval.
Some results could show good agreement with experiments, predic-
tion results which outside the training datasets condition cannot
achieve appropriate accuracy (Fig. 2). This point can be checked
based on experience or operation. The strategy of extending training
datasets via FEM simulation doesn’t imply that any output data of
the numerical model is adopted. The inaccuracy of the numerical
model will lead to weak generalization ability of the training data,
which makes it difficult to ensure the consistency between the
prediction results of machine learning and the experimental results.
We have built a numerical simulation model in our prior research,
but the model primarily focuses on a single temperature and barely
consists with test data under different temperatures. The simulation
model built based on the theory of degradation and electrochemical
can solve the availability of the data from the root. Moreover, the
accurate simulation model that consistent with the real test further
enhance the confidence of output data. Herein, calibrating the
numerical model will provide quality data.

In comparison with the previous work that focused on the
working voltage windows, the real test data in this research adds
two more features (i.e., temperature, rate). Increasing the numbers of
features will be more favorable for the prediction in regression
model while avoiding redundant and irrelevant features (Fig. 1B).

Figure 1. Different capacity fade mode of lithium ion battery and schematic diagram of the characterizes related to the capacity fading. (A) Different batteries
capacity fade mode under different temperature shows above the figure. The different modes are relative with the different working voltage windows
(2.75–4.0 V, 2.75–4.2 V, 3–4.05 V, 3–4.25 V) and different rate (1 C, 2 C, 3 C). Some batteries sharply decrease to failure between 500 cycles. However, some
battery life can reach 1000 cycles. (B) More factors (features) are selected for the precise capacity degeneration research. The cut-off voltage is subdivided into
upper cut-off voltage (UCOV) and low cut-off voltage (LCOV). The windows represent as the range of working voltage.
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This real data is utilized to calibrate the numerical model to high-
accuracy (Figs. 3A, 3B). In fact, considerable effort and time are
spent in the calibration of the model.

The battery capacity is affected by four side reactions in the
numerical model, all of which are based on the physicochemical
reactions.39 The calibration procedure are accomplished through
controlling side reactions, and the cycling data of 25 batteries are sat
as the standard reference (Figs. 3A, 3B). The calibration model is
used to get high-quality numerical data from sweeping different
temperatures, rates and working voltage windows (Fig. S3).

This strategy does not require massive experiment but get high-
quality data, has considerable advantages and accelerates the speed
of machine learning. Four side reactions are involved in the
COMSOL simulation model, including the growth of SEI, the
deterioration of positive and negative active materials, and the
increase of interface impedance. These reactions vary with operating
conditions, resulting in nonlinear changes in capacity degradation.
However, the law of the side reactions varying with operating
conditions have been grasped. Such as the thickness of SEI will rise
with the temperature and the deterioration of the positive active
particles are aggravated with the increase of the cut-off voltage.
Therefore, the model was calibrated by change the reaction rate
constants based on experience, experimental data, and relevant
literature.

The error between simulation result and test data is reduced to
whining 3%, ensure that the quality data applied for the machine
learning. Numerical data and the experimental data are combined as
the initial digital-twins datasets. The digital-twins datasets are used

to train and deploy machine learning models. Whereas, we are well
aware of our approach’s shortcoming, which is that the quality of
digital-twins datasets cannot be totally consistent with real-world
test data. In this case, machine learning has to include important
iterative training process (Fig. S4). In each iteration, the target
experimental results are compared and collected into the datasets.
When the predicted result agrees with the experimental result, the
iterative training stops and thus a machine learning model with high
accuracy is obtained.

ML model training.—The digital-twins datasets are the center of
the workflow for battery capacity prediction. Furthermore, powerful
algorithms have been developed and employed successfully, in-
cluding Deep Neural Network, Support Vector, Kernel Ridge and
Naive Bayes and so on.45–47,61–64 Herein, we preferentially pick the
machine learning algorithms which are widely and generally
applied. Neural network based estimator, which use nonlinear
mapping to predict target value, are preferred for highly nonlinear
applications.61,65–69 Alternatively, they can be called black-box-
based method because it does not require professional knowledge
about the internal dynamics. In other words, this algorithm enhances
the workflow’s universality and consistency.

The digital-twins datasets are split into training and test datasets
for the neural network building which has multi-layer perceptron
(MLP). In terms of non-linear model, the multi-layer perceptron, a
supervised learning algorithm, is particularly efficient (Fig. S5). The
K-fold cross validation method is used to evaluate the estimator
while choosing the high-performance structure for the multi-layer

Figure 2. Schematic diagram of confidence interval of machine learning using different data. The experimental data is combined from test data under limited
cycling protocols. The simulation model could extend the training data, especially add the data that under different cut-off voltage. The calibration process is
necessary to ensure the generalizability of numerical data. After calibrating with real test data, the numerical simulation can output batches of high-quality data
for machine learning training. The digital-twins datasets combined with limited test data and massive simulation data can effectively broaden the confidence
interval and improve the accuracy of machine learning.
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perceptron. In the basic approach, the K-fold cross validation
involves 10 mutually exclusive subsets. Meanwhile, the root mean
squared error (RMSE) is introduced as the fitting accuracy to the
model evaluation system. The data points that does not overfit is
selected under the premise of accuracy. (Fig. 4). Naturally, the
computer resources also are concerned in the workflow. Finally, the
neural network is designed with 3 hidden-layer and each layer has 50
neurons.

Before the data are put in the MLP, the digital-twins datasets are
normalized. With the help of the gradient descent rule, the
parameters of MLP are updated by the partial derivative of loss
function.70–72 This loop iterates continues until set accuracy or the
maximum iterations (loss value is minimum) is reached. The
learning rate is set to adaptive mode in the loop, and the solver’s
maximum number of iterations is set to −10 .6 The solver display
result of converging through limited epochs (Fig. S6). The neural
network model has a great prediction ability regardless of the
training or test datasets (Fig. 5A). Meanwhile, the neural network’s
parameters have been properly confirmed.

Prediction result.—The machine learning workflow gives a
reasonable result after six iterations (Table I). The maximum
capacity released under the restrained condition is found by
accumulate of all the battery discharge capacity during the life
cycling. If distributing the test evenly within the constraints, the
times of iterations will reduce. However, it does not affect the
prediction result but the prediction speed, and can be solved through
times of iterations. After the last iteration, the prediction result is
verified by the experiment (Fig. 5C). Surprisingly, the average
percentage error of the battery capacity prediction on the training

dataset is lower than 1% (Fig. 5C (3.0–4.3 V)). An additional
experiment after the last iteration is designed to verify the prediction
result (Fig. 5C (3.2–4.3 V). Note that This set of experimental data
was not applied to the training data.). The prediction result under
other condition can be accepted because average error is around 1%.
In our opinion, the prediction result which condition among the
datasets has more rationale value than the condition beyond the
datasets. Mathematically, compared with the result of interpolation,
the extrapolated values have relatively more risk and lower
confidence interval. As mentioned, distributing the test evenly may
promote the accuracy of prediction result. Increasing test samples
dispersed inside the boundary for the training may alleviate the
difficulty of lower confidence interval.

Detailly, the condition includes the various temperatures (i.e.,
15 °C–60 °C, step is 5 °C), rates (i.e., 1–3 C, step is 0.5 C, where the
C is the charge and discharge current,1 C = 3 A), the LCOV(i.e.,
2.7–3.5 V, step is 0.1 V), the UCOV (i.e., 3.7–4.5 V, step is 0.1 V).
In where, the temperature is below the 60 °C and the rate set lower
than 3 C for preventing the thermal runaway from occurring.
Besides, the working voltage windows which the difference between
UCOV and LCOV is set more than 1 V to assure energy density of
battery in operating. All the condition sat are constringed by the
electrochemical. A higher UCOV will result in severe interfacial
side reaction such as lithium deposition, particle fragmentation and
so on. The anode collect (Copper) will dissolute under lower LCOV
and deposition in the cathode interface. These side reactions not only
result in a larger capacity loss but also introduce serious safety
risks.73–79 In summary, 2250 conditions are found that fulfill the
constrains. In this work, 25 sets of experimental data were used in
the initial study, and 6 sets of experimental data were used in the

Figure 3. Schematic diagram of calibration process of numerical simulation based model. The simulation data get from sweeping the calibrated numerical
model. (A), (B) The calibration process of the numerical model is corresponded with the real test data, no matter the cycle voltage or the capacity. (C) After the
simulation model calibrated with real test data, the output numerical data can be of sufficient quality for the training. Meanwhile, the sweep concentrates on the
test condition’s surroundings in order to avoid numerical inaccuracies.
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iterative process. The 99% calculation in this research is the basis on
substituting all conditions experimentally.

The target condition is obtained by the workflow through limited
times of checks and iterations. Bright colors are used for specifically
identify, and it can be concluded that the relatively high capacity
released during the life cycle is focused in one area (Fig. 6A).
Taking the temperature for example, the condition which total
accumulative capacity higher than 2 kAh is between 35 °C–50 °C
(Fig. 6B). This fact signs the target we obtained is the global
maximum. With the data of all the condition prediction results, a
random forest trees model is developed for the importance analysis
(Fig. 6C). According to the result of RF model, the UCOV has a
greater impact on battery capacity fading than other factors.
However, the temperature is as important as the rate. The battery
appears to be slightly affected by the working voltage windows
(WV-windows).

The feature importance result is excellently agree with our
experiments and test. Based on the knowledge of electrochemistry,
extreme temperature(i.e., low and high temperature) and rate(i.e.,
heavy current) will inevitably cause more side reaction.
Furthermore, the UCOV not only will accelerate the side reaction
but also aggravate the material failure. Whereas, the LCOV appeared
to be less important for the capacity fade due to the sharp voltage
change at the charge start and discharge end. Taken together, the
analysis highlights the importance of the features and quantify the
impacts. Deeply speaking, the result enables for the monitoring of
training and battery performance evaluation.

As we stated at the beginning, the feature selected based on the
electrochemical will help to obtain promised result. For the capacity
degeneration prediction, all the important features affect the cycle

are considered in the model not only contribute to the speed of
iteration but also the accuracy of prediction. In the last, the datasets
after iteration in mentioned workflow are used to test the features we
selected (Fig. S8). However, before used for training, the datasets are
added or reduced some feature to verify. The change of the feature
based on the relationship with capacity. The standard of the
verification is based on the test data (45 °C, 1 C, 3.2–4.3 V, it needs
to be addressed that this data is not conclude in the training datasets)
(Figs. S8C, S8D). The RMSE of the model which numbers of
features reduced is drastically increased. Whereas, the accuracy is
slightly improved with the number of features added. From the
accuracy view, the more feature in the training datasets will
increased the reliability of the model. Nevertheless, this model is
prone to suffer from overfitting and consume more computer
resource. Besides, the cost of training is likely to dramatically rise.
Collectively, the features we adopt from the electrochemical theory
are demonstrated to be appropriate for the model and training.

Conclusions

Data-driven approach for the battery capacity prediction is
obstructed by the amount of training data. In this research, the
numerical simulation model built on electrochemical knowledge
used as the core to effectively extend the training datasets. Digital-
twins datasets combine the simulation data and limited test data is
used for the machine learning training. The features based on the
deterioration mechanism are scientifically adopted for the model
building. Numerical simulation based machine learning model is
built for the capacity prediction before degradation. The machine
learning workflow which uses the test data for iteration can reach

Figure 4. Cross-validation comparison framework. The parameters of the MLP in neural network is determined by the K-fold cross-validation and RMSE (i.e.,
the numbers of hidden layers and nodes). Noting that the numbers in the upper right represent the structure of neural network.
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high accuracy result. The innovation of this work lies in the machine
learning workflow is trained on the digital-twins datasets coming
from the numerical simulation to predict battery cycle life.

The focus of this research, in our opinion, should be on the
electrochemical method of building digital-twins datasets. Even
though the high precision result and quick approach have been
achieved, there are still some efforts spent on the simulation model
calibration. To be honest, the ability for simulation and the knowl-
edge of electrochemical is vital for this workflow, and will hinder it
generally applying. The machine learning workflow which can
automatically calibration the numerical simulation model extremely
attracts us to develop and build.
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Figure 5. Prediction result of the machine learning. (A) training and the model built process of the neural network. The result is classified by temperature. (B)
top five batteries by ranking the sum capacity during the life cycle, where the operating condition is signed above of figure. The data statistics are performed from
the prediction result of all conditions. (C) validate the predictive accuracy of the machine learning model using experimental data.

Table I. Prediction results of the iteration.

Iteration Temperature(°C) LCOV(V) UCOV(V) Rate(C) Sum capacity (kAh) Error (kAh)

1 15 2.7 3.7 1.5 3.119 2.144
2 15 2.7 4.5 1 2.963 2.640
3 55 3.1 4.5 1 2.850 1.558
4 45 3 4.3 1 2.835 0.341
5 40 3 4.3 1 2.560 0.007
6 40 3 4.3 1 2.550 0.003

*Noting that the table ranked by the iteration times. The conditions in table is corresponded with the prediction of the maximum capacity released during the
cycle life in each iteration. Besides, the 6th iteration isn’t verified because the target is same as 5th iteration. The errors are calculated by comparing the
prediction with experimental data.
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