赵金保教授课题组

研究前沿

原位拉曼光谱揭示了界面水的结构与解离

水分子在各个学科领域都扮演着至关重要的角色,人类对其结构的探索从未停止。电极/溶液界面水分子的物理化学特性是理解和发展表面科学、催化和能源科学的重要基础。更重要的是,水分子直接参与众多重要的电催化反应,如氢析出(HER)、氧析出(OER)、二氧化碳还原(CO2RR)、氧还原(ORR)、氮还原(NRR)等。这些处于固液两相界面的水,其数目远低于体相水分子。此外,电催化反应过程强烈依赖于电极电势,必须在电场控制的原位条件下研究才能如实获得真实反应过程的信息。因此,在原位条件下研究界面(特别是原子级平整的模型单晶表面)水分子的结构及其在电催化反应中的构效关系,一直是电化学领域的热点和难点。

该工作利用课题组发明的电化学原位SHINERS 技术(Nature, 2010, 464, 392-395),在析氢反应(HER)过程,原位监测钯单晶电极/溶液界面水分子的构型及其动态变化过程。研究发现,电极/溶液界面除了已知的含有氢键的水分子之外,还有一类与阳离子键合的水分子。后者在阳离子和负电极电势协同作用下,更为有效地排布成有序的结构。这类界面水分子比氢键水分子更加接近电极表面,可以提高其和电极表面间的电荷转移效率,极大提升HER反应速率。提高阳离子的浓度和价态会进一步增加界面区有序水分子的含量,进一步提高HER反应速率。研究还发现单晶电极的晶面结构和电子结构都将影响阳离子键合水分子的含量和HER反应速率,证实了阳离子键合水分子加速HER反应速率具有普适性。该研究从单晶模型体系出发,深入认识界面水分子结构对电催化反应过程的调控机制,解决了困扰电化学领域的长期难题,为提升电催化反应速率提供了一种新的策略。

原文链接:https://www.nature.com/articles/s41586-021-04068-z

(张明浩)


Free counters!

  • Copyright ©化学电源与储能材料实验室 版权所有 2016 All Rights Reserved
    地址:思明校区:厦门大学化学楼438 福建省厦门市思明区
    翔安校区: 能源材料大楼5号楼 福建省厦门市翔安区
    电话:0592-2186935  0592-2186930
    E-mail:jbzhao@xmu.edu.cn